The aromatic character of some small planar metallic clusters was revisited with an emphasis on their electrons

From OPENN - EUROPESE OMROEP - OFFICIAL PUBLIC EUROPEAN NETHERLANDS NETWORK
Jump to: navigation, search

In contrast to previous reports, our approach based on magnetic ring current as an indicator for aromaticity points out that the σ electron delocalization in molecules behaves as an important contributor to their thermodynamic stability. Ring Applications of 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid in Cross-Coupling Reactions were constructed using electron densities obtained from density functional theory calculations with the B3LYP functional and the 6-311G(d) basis set. Diatropic currents were further confirmed by an analysis of the symmetry of electronic excitations involved. The triatomic B3+ cycle is found to maintain a double σ and π aromaticity when it forms the [B3(NN)3]+ and [B3(CO)3]+ complexes. The planar pentacoordinated mixed copper clusters Cu3Si3+ and Cu3Ge3+ are found to be σ aromatic compounds. The copper hydrides CunHn can better be regarded as nonaromatic rather than aromatic compounds.

The ring current indicator reveals the σ aromatic feature the importance of σ electrons in determining the bonding characteristics of metallic clusters, and they should equally be considered as a key element.Quantification of the (anti)aromaticity of fulvalenes subjected to pi-electron Fulvalenes 3-12 were theoretically studied at the ab initio level of theory. For the global minima structures, the occupation of the bonding (pi)C=C orbital of the interring C=C double bond obtained by NBO analysis quantitatively proves pi-electron cross-delocalization resulting in, at least partially, 2- or 6pi-electron aromaticity and 8pi-electron antiaromaticity for appropriate moieties. The cross-conjugation was quantified by the corresponding occupation numbers and lengths of the interring C=C double bonds, while the aromaticity or antiaromaticity due to cross-delocalization of the pi-electrons was visualized and quantified by through-space NMR shielding surfaces.Kinetic modeling of anaerobic degradation of plant-derived aromatic mixtures by of Wisconsin-Madison, Madison, WI, 53726, USA.Rhodopseudomonas palustris is a model microorganism for studying the anaerobic metabolism of aromatic compounds. While it is well documented which aromatics can serve as sole organic carbon sources, co-metabolism of other aromatics is poorly understood.

This study used kinetic modeling to analyze the simultaneous degradation of aromatic compounds present in corn stover hydrolysates and model the co-metabolism of aromatics not known to support growth of R. palustris as sole organic substrates. The simulation predicted that p-coumaroyl amide and feruloyl amide were hydrolyzed to p-coumaric acid and ferulic acid, respectively, and further transformed via p-coumaroyl-CoA and feruloyl-CoA. The modeling also suggested that metabolism of p-hydroxyphenyl aromatics was slowed by substrate inhibition, whereas the transformation of guaiacyl aromatics was inhibited by their p-hydroxyphenyl counterparts. It also predicted that substrate channeling may occur during degradation of p-coumaroyl-CoA and feruloyl-CoA, resulting in no detectable accumulation of p-hydroxybenzaldehyde and vanillin, during the transformation of these CoA ligated compounds to p-hydroxybenzoic acid and vanillic acid, respectively. While the simulation correctly represented the known transformation of p-hydroxybenzoic acid via the benzoyl-CoA pathway, it also suggested co-metabolism of vanillic acid and syringic acid, which are known not to serve as photoheterotrophic growth Steroid production by isolated theca and granulosa cells after initiation of Hypophysectomized PMSG-primed hamsters were injected with PMSG antiserum and the theca and granulosa cells of the resulting atretic follicles were incubated in vitro. In the absence of added hormone, 17 alpha-hydroxyprogesterone and oestradiol production was not detectable in granulosa cells collected and incubated at 0, 12 and 24 h after antiserum.

Progesterone production was not detected in control incubations at 0 h but was measurable with cells collected at 12 h after PMSG antiserum. When incubated with androstenedione or pregnenolone (10 ng/ml for each) 17 alpha-hydroxyprogesterone and progesterone production by granulosa cells were significantly increased at 0, 12 and 24 h after antiserum. Granulosa cells were capable of aromatizing androstenedione to oestradiol at all times examined. At 0 and 12 h after antiserum to PMSG, isolated thecal shells produced androstenedione. LH stimulation caused increased androstenedione production in all thecae at 0 h, in 50% of the thecae at 12 h and in none at 24 h after antiserum. Thecal shells produced 17 alpha-hydroxyprogesterone in response to LH at 0, 12 and 24 h after antiserum, and produced progesterone at all times examined. Thecae also responded to LH with increased progesterone production up to 72 h after antiserum.

These experiments demonstrate that one important steroidogenic event in atresia may be the loss of activity of C 17,20 lyase in the theca leading to loss of substrate (androstenedione) for granulosa cell aromatization, although aromatase activity is present until at least 24 h after the induction of atresia.Complement dependent amplification of the innate response to a cognate microbial The long pentraxin PTX3 is a fluid-phase pattern recognition receptor, which plays a nonredundant role in resistance against selected pathogens.