Herein we consider a series of symmetrically substituted conjugated rings with potential Baird aromaticity in the lowest excited triplet and singlet states

From OPENN - EUROPESE OMROEP - OFFICIAL PUBLIC EUROPEAN NETHERLANDS NETWORK
Revision as of 02:35, 14 June 2024 by Copyplane5 (talk | contribs) (Created page with "Our computational results allow us to establish general guidelines for the rational design of molecules with excited state Hückel/Baird aromaticity in pro-aromatic quinoidal compounds. We found two main strategies to promote high Baird aromatic character: 1) anionic and small conjugated rings with electron donating groups as substituents and small exocyclic groups with electron withdrawing substituents, or 2) electron deficient conjugated rings with exocyclic electr...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Our computational results allow us to establish general guidelines for the rational design of molecules with excited state Hückel/Baird aromaticity in pro-aromatic quinoidal compounds. We found two main strategies to promote high Baird aromatic character: 1) anionic and small conjugated rings with electron donating groups as substituents and small exocyclic groups with electron withdrawing substituents, or 2) electron deficient conjugated rings with exocyclic electron-donor substitution.Triplet State Baird Aromaticity in Macrocycles: Scope, Limitations, and Arcata, California 95521, United States.The aromaticity of cyclic 4nπ-electron molecules in their first ππ* triplet state (T1), labeled Baird aromaticity, has gained growing attention in the past decade. Here we explore computationally the limitations of T1 state Baird aromaticity in macrocyclic compounds, [n]CM's, which are cyclic oligomers of four different monocycles (M = p-phenylene (PP), 2,5-linked furan (FU), 1,4-linked cyclohexa-1,3-diene (CHD), and 1,4-linked cyclopentadiene (CPD)). We strive for conclusions that are general for various DFT functionals, although for macrocycles with up to 20 π-electrons in their main conjugation paths we find that for their T1 states single-point energies at both canonical UCCSD(T) and approximative DLPNO-UCCSD(T) levels are lowest when based on UB3LYP over UM06-2X and UCAM-B3LYP geometries.

This finding is in contrast to what has earlier been observed for the electronic ground state of expanded porphyrins. Yet, irrespective of functional, macrocycles with 2,5-linked furans ([n]CFU's) retain Baird aromaticity until larger n than those composed of the other three monocycles. Also, when based on geometric, electronic and energetic aspects of aromaticity, a 3[n]CFU with a specific n is more strongly Baird-aromatic than the analogous 3[n]CPP while the magnetic indices tell the opposite. To construct large T1 state Baird-aromatic [n]CM's, the design should be such that the T1 state Baird aromaticity of the macrocyclic perimeter dominates over a situation with local closed-shell Hückel aromaticity of one or a few monocycles and semilocalized triplet diradical character. Monomers with lower Hückel aromaticity in S0 than benzene (e.g., furan) that do not impose steric congestion are preferred.

Structural confinement imposed by, e.g., methylene bridges is also an approach to larger Baird-aromatic macrocycles. Finally, by using the Zilberg-Haas description of T1 state aromaticity, we reveal the analogy to the Hückel aromaticity of the corresponding closed-shell dications yet observe stronger Hückel aromaticity in the macrocyclic dications than Baird aromaticity in the T1 states of the neutral macrocycles.Switching between Aromatic and Antiaromatic 1,3-Phenylene-Strapped [26]- and [28]Hexaphyrins upon Passage to the Singlet Excited State.Chemistry, Yonsei University , Seoul 120-749, Korea.We have demonstrated aromaticity reversal in the singlet excited states of internally 1,3-phenylene-strapped [26]- and [28]hexaphyrins (P26H and P28H).

P26H displays a broad and reduced singlet-excited-state absorption spectrum, whereas P28H exhibits a sharp and intense singlet-excited-state absorption spectrum; both are in contrast to the ground-state absorption spectra, strongly indicating aromaticity reversal in the singlet excited state. Furthermore, magnetic and topological indices of aromaticity such as nucleus-independent chemical shift and harmonic oscillator model of aromaticity values for P26H and P28H also suggest that their singlet excited states become antiaromatic and Phase-lag synchronization in networks of coupled chemical oscillators.Morgantown, West Virginia 26505-6045, USA.Chemical oscillators with a broad frequency distribution are photochemically coupled in network topologies. Experiments and simulations show that the network synchronization occurs by phase-lag synchronization of clusters of oscillators with zero- or nearly zero-lag synchronization. Symmetry also plays a role in the synchronization, the extent of which is explored as a function of coupling strength, frequency distribution, and the highest frequency oscillator location. The phase-lag synchronization occurs through connected synchronized clusters, with the highest frequency node or nodes setting the frequency of the entire network.

The synchronized clusters successively "fire," with a constant phase difference between them. For low heterogeneity and high coupling strength, the synchronized clusters are made up of one or more clusters of nodes with the same permutation symmetries. As Organic Synthesis of 6-butyl-n-hydroxynaphthimide trifluoromethanesulfonic acid is increased or coupling strength decreased, the phase-lag synchronization occurs partially through clusters of nodes sharing the same permutation symmetries. As heterogeneity is further increased or coupling strength decreased, partial synchronization and, finally, independent unsynchronized oscillations are observed. The relationships between these classes of behavior are explored with numerical simulations, which agree well with the experimentally observed behavior.Probing the Most Aromatic and Antiaromatic Pyrrolium Rings by Maximizing Hyperconjugation and Push-Pull Effect.