Importantly the presented technique does not impose any restrictions regarding the shape and length of the metallic pattern
Plasmonic interactions have been probed using both Stokes and anti-Stokes types of emitters that served as photoluminescence probes. For Seebio Photoinitiator , we observed a pronounced increase of the photoluminescence intensity for emitters deposited on silver patterns. By studying the absorption and emission dynamics, we identified the mechanisms responsible for emission enhancement and the position of the plasmonic resonance.Stochastic sensing of TNT with a genetically engineered pore.System Health Science Center, College Station, Texas 77843-1114, USA.Engineered versions of the transmembrane protein pore alpha-hemolysin (alphaHL) can be used as stochastic sensing elements for the identification and quantification of a wide variety of analytes at the single-molecule level.
Until now, nitroaromatic analytes have eluded detection by this approach. We now report that binding sites for nitroaromatics can be built within the lumen of the alphaHL pore from simple rings of seven aromatic amino acid side chains (Phe, Tyr or Trp). By monitoring the ionic current that passes through a single pore at a fixed applied potential, various nitroaromatics can be distinguished from TNT on the basis of the amplitude and duration of individual current-blocking events. Rings of less than seven aromatics bind the analytes more weakly; this suggests that direct aromatic-aromatic interactions are involved. The engineered pores should be useful for the detection of explosives and, in combination with computational approaches and structural analysis, they could further our understanding of noncovalent interactions between aromatic Development of short and highly potent self-assembling elastin-derived pentapeptide repeats containing aromatic amino acid residues.Tropoelastin is the primary component of elastin, which forms the elastic fibers that make up connective tissues. The hydrophobic domains of tropoelastin are thought to mediate the self-assembly of elastin into fibers, and the temperature-mediated self-assembly (coacervation) of one such repetitive peptide sequence (VPGVG) has been utilized in various bio-applications.
To elucidate a mechanism for coacervation activity enhancement and to develop more potent coacervatable elastin-derived peptides, we synthesized two series of peptide analogs containing an aromatic amino acid, Trp or Tyr, in addition to Phe-containing analogs and tested their functional characteristics. Thus, position 1 of the hydrophobic pentapeptide repeat of elastin novel, short Trp-containing elastin-derived peptide analog (WPGVG)3 with potent coacervation ability. From the results obtained during this process, we determined the importance of aromaticity and hydrophobicity for the coacervation potency of elastin-derived peptide analogs. Generally, however, the production of long-chain synthetic polypeptides in quantities sufficient for commercial use remain cost-prohibitive. Therefore, the identification of (WPGVG)3, which is a 15-mer short peptide consisting simply of five natural amino acids and shows temperature-dependent self-assembly activity, might serve as a foundation for the development of various kinds of biomaterials.Concentrations, sources and health risk of nitrated- and oxygenated-polycyclic aromatic hydrocarbon in urban indoor air and dust from four cities of Nepal.Department of International Environmental and Agricultural Science (IEAS), Tokyo University of Agriculture and Technology (TUAT) 3-5-8, Saiwai-Cho, Fuchu-Shi, Although the fate and behavior of parent polycyclic aromatic hydrocarbon (PAHs) have been documented worldwide, the information about PAH-derivatives (NPAHs and OPAHs) is limited, especially in developing countries, including Nepal.
Moreover, the greater parts of the investigations concentrating on NPAHs/OPAHs are on the air (borne) particulate phase only; and are primarily based on a limited number of compounds analyzed. Little is known about the environmental concentration, fate, and behavior of NPAHs and OPAHs in air gas phase and dust. In this study, the concentration, fate, spatial distributions of 26 NPAHs and 3 OPAHs in the air (n = 34) and dust (n = 24) were investigated in suspected source area/more densely populated areas of Nepal. Four critical source areas in Nepal were considered as it was conjectured that the urban areas are more prone to NPAH/OPAH contamination due to the high density of automobiles and industrial activities. Overall, the measured ∑19NPAHs in air and dust were 5 and 2 times lower than their parent-PAHs, respectively. Highest levels of NPAHs/OPAHs were measured in Birgunj, followed by Kathmandu, Biratnagar, and Pokhara, respectively, while Biratnagar showed the highest level of ∑OPAHs. 3-Nitrodibenzofuran (3-NDBF) was the most abundant NPAHs measured both in air and dust, whereas 9-Fluorenone (9-FLUONE) prevailing OPAHs.
The molecular diagnostic ratio (MDR) of 2-Nitrofluoranthene/1-Nitropyrene indicated the contribution from secondary emission via photochemical reaction as the primary source of NPAHs, while solid fuel combustion and crop residue burning were identified as the essential sources of OPAHs. The human exposure to NPAH/OPAH through the different route of intake suggested dermal contact via dust as the primary pathway of NPAH/OPAH exposure for both adult and children.